41 research outputs found

    The role of thermal fluctuations in sound propagation in a two-dimensional Fermi gas

    Full text link
    We numerically study the transport properties of a two-dimensional Fermi gas in a weakly and strongly interacting regimes, in the range of temperatures close to the transition to a superfluid phase. For that we excite sound waves in a fermionic mixture by using the phase imprinting technique, follow their evolution, and finally determine both their speed and attenuation. Our formalism incorporates thermal fluctuations via the ground canonical ensemble description and with the help of Metropolis algoritm. From numerical simulations we extract temperature dependence of the sound velocity and diffusivity as well as the dependence on the interaction strength. We emphasize the role of virtual vortex-antivortex pairs creation in the process of sound dissipation

    Single-shot simulations of dynamics of quantum dark solitons

    Full text link
    Eigenstates of Bose particles with repulsive contact interactions in one-dimensional space with periodic boundary conditions can be found with the help of the Bethe ansatz. The type~II excitation spectrum identified by E. H. Lieb, reproduces the dispersion relation of dark solitons in the mean-field approach. The corresponding eigenstates possess translational symmetry which can be broken in measurements of positions of particles. We analyze emergence of single and double solitons in the course of the measurements and investigate dynamics of the system. In the weak interaction limit, the system follows the mean-field prediction for a short period of time. Long time evolution reveals many-body effects that are related to an increasing uncertainty of soliton positions. In the strong interaction regime particles behave like impenetrable bosons. Then, the probability densities in the configuration space become identical to the probabilities of non-interacting fermions but the wave-functions themselves remember the original Bose statistics. Especially, the phase flips that are key signatures of the solitons in the weak interaction limit, can be observed in the time evolution of the strongly interacting bosons.Comment: 11 pages, 9 figure

    Exact dynamics and decoherence of two cold bosons in a 1D harmonic trap

    Full text link
    We study dynamics of two interacting ultra cold Bose atoms in a harmonic oscillator potential in one spatial dimension. Making use of the exact solution of the eigenvalue problem of a particle in the delta-like potential we study time evolution of initially separable state of two particles. The corresponding time dependent single particle density matrix is obtained and diagonalized and single particle orbitals are found. This allows to study decoherence as well as creation of entanglement during the dynamics. The evolution of the orbital corresponding to the largest eigenvalue is then compared to the evolution according to the Gross-Pitaevskii equation. We show that if initially the center of mass and relative degrees of freedom are entangled then the Gross-Pitaevskii equation fails to reproduce the exact dynamics and entanglement is produced dynamically. We stress that predictions of our study can be verified experimentally in an optical lattice in the low-tunneling limit.Comment: 9 figures, 5 movies available on-lin
    corecore